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Accelerated motional cooling with deep reinforcement learning
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Achieving fast cooling of motional modes is a prerequisite for leveraging such bosonic quanta for high-speed
quantum information processing. In this Letter, we address the aspect of reducing the time limit for cooling,
below that constrained by the conventional sideband cooling techniques, and propose a scheme to apply deep
reinforcement learning (DRL) to achieve this. In particular, we have numerically demonstrated how the scheme
can be used effectively to accelerate the dynamic motional cooling of a macroscopic magnonic sphere, and how
it can be uniformly extended to more complex systems, for example, a tripartite opto-magno-mechanical system,
to obtain cooling of the motional mode below the time bound of coherent cooling. While conventional sideband
cooling methods do not work beyond the well-known rotating wave approximation (RWA) regimes, our proposed
DRL scheme can be applied uniformly to regimes operating within and beyond the RWA, and thus, this offers
a new and complete toolkit for rapid control and generation of macroscopic quantum states for application in
quantum technologies.
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Introduction.− Fast cooling of bosonic mechanical modes
of macroscopic systems is a primary objective of the ongoing
efforts in quantum technology [1–5], and is a prerequisite
for diverse prospective applications, such as the realiza-
tion of macroscopic superposition states [6], gravitational
tests of decoherence [7,8], ultraprecise measurements and
sensing [9,10], and bosonic quantum computing [11]. Macro-
scopic yttrium-iron-garnet (YIG, Y3Fe5O12) magnets have
recently attracted strong interest towards such applications
given the versatility of such systems in coupling to other
modes falling in a wide frequency spectrum, e.g., with optical,
microwave, and acoustic modes, as well as to superconduct-
ing qubits [12–17]. In addition, highly polished YIG spheres
feature high magnonic Q factor and exhibit large frequency
tunability properties due to the magnetic field dependence
of the excited magnon modes. Considering, in particular,
the cooling of motional modes of such objects, the usual
method of sideband cooling based on weak magnomechanical
interaction, operates on a time scale longer than the me-
chanical period of oscillation and depends on the relaxation
dynamics of the subsystems. There have been a few propos-
als to improve the performance of optomechanical cooling
of a mechanical resonator with squeezed light that works in
the sideband-unresolved limit [18–20]. Cooling of mechan-
ical modes in a timescale less than the mode frequency is
highly advantageous for quantum computation and bosonic
error correction [11,21]. By going over to the strong cou-

*bijita.sarma@oist.jp

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

pling regimes in magnon-phonon interactions, the speed of
motional cooling can be highly enhanced giving rise to ac-
celerated cooling. However, in such strong coupling regimes,
the energy-nonconserving dynamics prevails because of the
simultaneous presence of counter-rotating interactions, which
makes it impossible to use sideband motional cooling tech-
niques in this regime. In this work, we explore the usefulness
of a machine learning based approach to address the aspect of
reducing the time limit for cooling below that constrained by
the conventional cooling techniques.

Recently, various machine learning (ML) approaches,
aided with artificial neural networks as function approxima-
tors, have found widespread technological applications [22].
Among the various ML approaches, reinforcement learning
(RL) [23] is considered to exhibit the closest resemblance
to a humanlike learning approach, in that the RL-agent tries
to gather experience on its own by interacting with its en-
vironment in a trial and error approach. In RL terminology,
the environment describes the virtual/realworld surrounding
the agent, with all the physics hardcoded into it along with a
reward function based on which the agent can classify its good
moves from the bad ones. RL, when operated in combination
with artificial neural networks, is known as deep reinforce-
ment learning (DRL). DRL has become crucial in many
industrial and engineering applications, primarily after re-
cent seminal works by Google DeepMind researchers [24,25].
Following these developments, there have been several fasci-
nating applications of DRL in various fundamental domains
of science, including some in quantum physics in areas of
quantum error correction, [26–28] quantum control [29], mul-
timode cooling [30], and state engineering [31–39].

In this Letter, we propose a DRL-based control scheme
for accelerated motional cooling, that works for a generalized
parameter setting of the coupling strength between the sub-
systems. In particular, we use the protocol to cool the acoustic
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FIG. 1. (a) The sche matic workflow of the DRL protocol is
shown, where the RLenvironment is either the bipartite magno-
mechanical system (b), or the tripartite opto-magno-mechanical
system (c). See text for further detail on DRL and the physical
models.

phonon modes of a YIG sphere with a magno-mechanical
interaction, and demonstrate numerically how it works effi-
ciently in the strong coupling regime, where other methods
such as sideband cooling fail. Also, we show how going over
to the strong coupling regime is particularly advantageous,
as it lowers the cooling time well below the phonon oscilla-
tion period and two orders of magnitude below the sideband
cooling time limit. We demonstrate the usefulness and gen-
eralizability of our DRL cooling protocol by extending its
application to a tripartite system of a trapped YIG magnet with
its magnonic modes coupled to the center-of-mass (COM)
mode in the trap and an optical cavity mode, and show that,
despite the system being in the ultrastrong coupling regime,
our DRL scheme can reveal nontrivial coupling modulations
to cool the motional mode, which is usually not possible with
coherent counter-intuitive protocols.

Bipartite magno-mechanical model.− We consider a setup
as shown in Fig. 1(b), where a highly polished YIG sphere is
placed in a microwave cavity. With a large external homoge-
neous magnetic field, B0, applied in the ẑ direction, the YIG
sphere is magnetized to its saturation magnetization, Ms =
5.87 × 105 Am−1, which gives rise to collective spin wave
magnon modes [16,40]. The frequency of the Kittel mode,
which is the uniform magnon mode in the YIG sphere, is given
by ωm = γ B0, where γ /2π = 28 GHz/T is the gyromagnetic
ratio. Due to the magnetostriction properties, YIG spheres
also exhibit high- Q acoustic modes which are coupled to the
magnon modes [12,15], and by driving the magnon modes
with MW fields, the magno-mechanical coupling can be tuned
and controlled [15,17]. In the limit of adiabatic elimination for
a low-Q cavity, the bipartite magno-mechanical Hamiltonian
is given by (see Supplemental Material [41] for detail)

H̃/h̄ = �mm†m + ωbb†b + (G̃m + G̃∗m†)(b + b†), (1)

where m(m†) and b(b†) are the magnonic and acoustic mode
annihilation (creation) operators, ωb is the resonance fre-
quency of the acoustic mode, �m = ωm − ωd (drive frequency

ωd ) is the detuning, and G̃ is the magno-mechanical coupling
strength. Note that, in such a bipartite system, while the
beam-splitter interaction G̃mb† + G̃∗m†b, is valid for weak
magno-mechanical coupling and favors mechanical cooling
at the red sideband �m = ωb, the full coupling interaction
accounting for the strong/ultrastrong coupling regimes is not
favorable in the usual sideband cooling approach. Sideband
cooling works through anti-Stokes scattering of the excitation
from the thermally populated mode, b to the mode at zero
entropy, m. However, such cooling needs constant driving as
it is a steady-state process that takes a duration of the order of
the relaxation dynamics of the subsystems (see Supplemental
Material [41]). If one can access the strong coupling regime
and manage to tame the counter-rotating interactions therein,
there is a possibility of getting faster cooling than this limit. In
the following, we design an algorithm based on DRL to model
a dynamic variation of coupling, G̃(t ), to get faster cooling of
the acoustic mode that operates within and beyond the weak
coupling regime.

The schematic workflow of the DRL scheme applied to
the physical model (RLenvironment) is shown in Fig. 1(a).
The RLagent consists of a neural network model that is
optimized for selected choices of actions that lead to desir-
able changes, and to net maximum rewards. The RLagent
is modelled using the recently proposed Soft Actor-Critic
(SAC) [42] algorithm that is based on the maximization
of the entropy, H(πθ (·|st )) of the policy, πθ as well as
the long-term discounted cumulative return r(st , at ), i.e.,
maxE[

∑
t γt (r(st , at ) + αH(πθ (·|st )))], where θ denotes the

optimizable weights of the neural networks, γ is the discount
factor, and α is the regularization coefficient that determines
the stochasticity of the policy. The policy πθ (·|st ) sets the rules
for the particular actions to be applied on the RLenvironment
and essentially maps the observations (st ) to particular actions
(at ) (see Supplemental Material [41] for further details).

The dynamics of the system is described by the quantum
master equation (QME) for the density matrix ρ with the
Hamiltonian H̃ as

dρ(t ) = − i

h̄
[H̃, ρ]dt

+
∑

j

[κ j (n̄c j + 1)L[c j]ρ + κ j n̄c jL[c†
j ]ρ]dt, (2)

with dissipation and thermal fluctuations given by the Lind-
blad superoperators, L[c j]ρ ≡ c jρc†

j − 1
2 {c†

j c j, ρ} where κ j’s
are the damping rates of the modes, and the thermal occupa-
tion of each bosonic mode is given by n̄c j = [exp(h̄ω j/kBT ) −
1]−1, where T is the bath temperature and kB is the Boltzmann
constant. Solving the full QME to obtain the mean occupancy
is a computationally intensive task. DRL typically requires
several thousands of episodes of training, and solving the
full QME within each episode is too resource sensitive for
complex systems such as the ones we consider in this work.
We employ an alternative approach to compute the mean
occupancy in each mode using a set of linear differential equa-
tions for the second-order moments obtained from the QME,
given by ∂t 〈ôiô j〉 = Tr(ρ̇ôiô j ) = ∑

m,n ζmn〈ômôn〉, where ôi,
ô j , ôm, and ôn are one of the operators (c j

†, c j), and ζmn

are the corresponding coefficients. Instantaneous solutions of
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FIG. 2. (a) Accelerated DRL-based cooling of the phonon mode
shown with the cooling quotient, ñb, of the bipartite system as shown
in Fig. 1(b) as a function of G̃max, the maximum allowed control
[with the values under RWA or beyond-RWA (BRWA)]. (b) The
DRL-optimized complex pulse sequence is shown as a polar plot for
G̃max/(

√
2ωb) = 5. The green dot shows the starting point while the

red dot shows the final point. (c) The time required for cooling with
the DRLscheme, τ̃DRL (right yaxis), for ñb � 10−4, is compared with
the time limit for effective sideband cooling, τSB (left yaxis).

these equations, i.e., the second-order moments and the con-
trols, G̃(t ), are used as the observations, st , for the RLagent
in Fig. 1(a), and the reward function is chosen as, r(t ) =
1/ñb(t ). Here ñb(t ) = 〈b†b〉(t )/nT

b is the cooling quotient of
the phonon number with respect to thermal occupancy, nT

b at
temperature T , where 〈b†b〉 represents the mean value of the
phonon population. Further details of the DRL controller can
be found in the Supplemental Material.

In Fig. 2(a), we show the cooling quotient ñb for the DRL-
optimized controls, as a function of G̃max (the maximum of
the coupling parameter). We consider �m = ωb, and damping
rates as, κb/ωb = 10−5 and κm/ωb = 0.1. It is found that as
the coupling is increased towards the ultrastrong coupling
regime (G̃ � ωb), the cooling becomes much faster. The DRL-
optimized complex pulse sequence is shown as a polar plot
for G̃max/(

√
2ωb) = 5 in Fig. 2(b). We denote the minimum

time for cooling achieved by our method as τ̃DRL. Figure 2(c)
compares this time as a function of G̃max with respect to the
sideband cooling time limit, τSB, which represents the shortest
cooling time limit possible with these methods, that work only
when the rotating wave approximation (RWA) is applicable
(see Supplemetal Material). With the DRL-based coupling
modulations, we can achieve very low limits of cooling time
compared to sideband cooling techniques, showing a lowering
of approximately two orders of magnitude, which for the
ultrastrong coupling regime, is further lowered.

Tripartite opto-magno-mechanical model.− Now we show
that the proposed scheme can be extended effectively to
more complex systems, for example, a higher-order tripar-
tite opto-magno-mechanical system where we intend to cool
the motional mode through nontrivial three-mode interac-
tions. For this, we consider a system comprising a levitated

YIG sphere in a harmonic trap [43–45], along with a driven
WGM optical micr oresonator placed along the x̂ direction
with a magnetostrictive rod (MR) attached to it, as depicted
in Fig. 1(c), which will be used as the RLenvironment in
Fig. 1(a) in the DRL model. In a large external homogeneous
magnetic field, B0, applied in the ẑ direction, the YIG sphere
is magnetized to the saturation magnetization, Ms, and the ho-
mogeneously magnetized fundamental magnon mode (Kittel
mode) produces a change in the axial length of the MR, which
modulates the WGM optical mode frequency [2,46–48]. This
gives rise to a coupling between the WGM optical mode (a)
and the magnon mode (m) of the form 
Sa†a(m + m†), where

S = �ω is the optical frequency shift. The magnon mode
can also be coupled to the COM motion of the YIG sphere by
applying a spatially inhomogeneous external time-dependent
magnetic field, Hg(y, t ) [49,50], which satisfies the weak
driving, |Hg(y, t )| � H0, and small-curl, |∇ × Hg(y, t )‖r| �
|Hg(y, t )| conditions (see the Supplemental Material [41]
for more information). Considering a time-varying gradient
magnetic field of the form Hg(y, t ) = bg(t )

μ0
yŷ, (bg in units

of [T/m]), the interaction Hamiltonian for the COM mo-
tion in the ŷ-directi on (frequency ωb) and the magnon
mode is given by Hmb(t ) = 
̃P(b̂ + b̂†)(m̂ + m̂†), with 
̃P =
bg

4

√
|γ |MS

ρωb
, where Ms = 5.87 × 105Am−1 is the saturation

magnetization, and ρ = 5170 kg/m3 is the mass density of
YIG. In the rotating frame of the cavity drive and the dis-
placement picture of the average field in each mode [51], the
complete Hamiltonian is described by

H̃/h̄ = �aa†a + ωmm†m + ωbb†b + 
̃S (a + a†)(m + m†)

+ 
̃P(m + m†)(b + b†), (3)

where �a is the cavity detuning, and 
̃S is the driving-
enhanced optomagnonic coupling rate. One can modulate 
̃S

via the external drive, whereas the phonon-magnon coupling

̃P can be modulated using the time-varying magnetic field
gradient. In order to cool the COM motion, we intend to trans-
fer the phonon population from the COM mode to the optical
mode without populating the magnon mode. The damping
rates of the cavity, magnon, and COM modes are given by,
κi’s, and the corresponding thermal populations at tempera-
ture T are nT

i , with i ∈ {a, m, b}. Since the optical cavity mode
oscillates at high frequency, its corresponding thermal bath,
even at room temperature, yields zero thermal occupancy,
however, the phonon and magnon baths are occupied.

Similar to the bipartite system discussed above, we next
use the second-order moment equations to solve the dynamics
of the system and the DRL scheme is used to optimize the con-
trols 
̃P/S by maximizing the net reward signal per episode,
r(t ) = 1/ñb − λ 〈m†m〉(t ), where λ is a constant chosen such
that the magnon mode does not get populated. Given the fact
that the COM mode frequencies of the YIG are of the order
of ωb/2π ∼ 10 − 100’s of kHz, and the magnon frequency
is ωm/2π ∼ 10 GHz, the ideal choice of ωm for ωb/2π =
100 kHz is ωm = 105 ωb. With such a high frequency differ-
ence with the intermediate magnon mode at ωm = 105 ωb, this

constitutes a largely detuned system (ωm �
√


̃2
P + 
̃2

S). In
such a system, while the magnon mode is usually decoupled,
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the ideal time limit to obtain swap between mechanical quanta
and optical mode with the ideal Raman pulses is given by
τ̃lim = πωm/(2
̃P
̃S ) (see the Supplemental Material [41]).
However, this is the limit for the situation as long as the RWA
is valid. It is also noted that the effectiveness of this kind of
cooling is highly reduced in the presence of damping, and
going beyond the RWA to decrease the cooling time limit
is not possible because of the counter-rotating dynamics. We
apply the DRL strategy to work in a regime where 
̃i’s are
sufficiently high to access the cooling limit not obtainable by
these conventional means, and also keep the counter-rotating
dynamics in control. While the use of the method of coupled
second order moments reduces the computation resources
drastically, simulating the dynamics with the choice of the
realistic parameter ωm = 105 ωb with high coupling strengths,
for example 
̃max

S = 
̃max
P = 100 ωb, turns out to be a com-

putationally highly intensive problem, due to the very stiff
solution of the set of differential equations. Hence, we adopt a
two-step training procedure for the problem. In this protocol,
we first use an auxiliary system with ωm = 103ωb and 
̃max

S =

̃max

P = 10 ωb, for which the solution of the set of equa-
tions can be obtained without much computational effort. The
trained auxiliary model is then used as a supervisor/teacher
for the actual system, that we call primary, with ωm = 105ωb

and 
̃max
S = 
̃max

P = 100 ωb. Training the primary system for
a few hundred episodes with periodic evaluation of the RLa-
gent yields the best trained model. In the literature of RL, such
a scheme is known as imitation learning, and is a feature of
generalizability of RL-trained models.

In Fig. 3(a), the cooling quotients of the photon, magnon,
and phonon modes, ñi = ni/nT , are shown, where ni’s are
the mean occupancies and nT is the phonon thermal bath
population. The cooling time limit for this system is given by
τ̃limωb/(2π ) ∼ 5 (see the Supplemental Material [41]). The
plot shows the population dynamics in the three modes for
the DRL-based coupling parameters with a maximum allowed
value, 
̃max

i /ωb = 100. One can see that while the magnon
mode is kept at a constant population, there is a scattering
between the mechanical and optical mode that gives rise to
five orders of cooling in the mechanical mode. This draws an
analogy to the stimulated Raman adiabatic passage (STIRAP)
techniques for three-mode systems. However, it is well-known
that such adiabatic techniques require longer time and only
works ideally as long as the counter-rotating terms are not
present (see the Supplemental Material [41]). On the con-
trary, the coupling parameters found by our DRL protocol are
nontrivial, which are shown in Fig. 3(b), and the overall time
required for cooling is reduced below the adiabatic limit even
for high values of coupling. In the bottom panel of Fig. 3(a)
we show the cooling time required by our DRL method for
even larger values, and higher coupling parameters yield even
lower time limits.

Finally, we provide a critical understanding of the impli-
cations of the current work. The control of open quantum
systems with large Hilbert space dimensionality faces sev-
eral limitations, specifically, due to the huge numerical
resources required to simulate and store such complex sys-
tems, e.g., the systems with infinite dimensionality with
energy-nonconserving dynamics as considered in this work.
Numerical differentiation has always been the bottleneck in

FIG. 3. (a) The DRL-scheme based mean occupancies of the
phonon, magnon, and photon modes are shown in terms of the
cooling quotient, ñi (in green, orange, and blue lines, respectively)
for 
̃{S,P}/ωb = 100. The vertical lines show the time limits for the
DRL-based cooling with 
̃max

i /ωb = {100, 120, 150}, respectively
(in green, purple, and pink). While the DRL-derived scheme gives
a cooling quotient of ñb < 10−4, the corresponding Raman pulses
with the same amount of maximum allowed coupling strength gives
lower values, and the cooling time limits for these are far higher than
those obtained with the DRLscheme. The markers show the cooling
results obtained for the conventional counter-intuitive pulses, with
the corresponding cooling quotients and time limits shown with each
point in the order (τ̃lim, ñb). (b) The corresponding DRL-optimized
coupling parameters are shown for the case of maximum allowed
value of 
̃{S,P}/ωb = 100.

such contexts. In the protocol we have outlined, such com-
plexities and constraints can be eliminated since one no longer
needs to deal with density matrices of order N n, where N is
the dimension of the Hilbert space and n is the number of
subsystems in the system. Instead, solving a set of n(n + 1)
ordinary differential equations (ODE) is sufficient, which is
an immense reduction in computational time and resources.
A particular advantage of using RL-optimized controls in
such context is that the trained model can be generalized
to many control parameters depending on the problem of
interest.

Conclusion.− In this Letter, we address the aspect of
reducing the time required for cooling bosonic motional
modes below the time limit accessible by well-known cooling
methods with scattering techniques. While such conventional
methods of cooling do not work in strong and ultrastrong
coupling regimes where the RWA is not valid, we design
a DRL-based algorithm that works within and beyond such
regimes, and show that by accessing the ultrastrong cou-
pling limit with DRL-designed pulses the cooling limit can
be broken resulting in accelerated cooling. We further show
how the protocol can be adapted for cooling in a tripartite
system with an opto-magno-mechanical interaction, that rep-
resents more complexity for the DRLcontrol owing to the
huge dimensionality in the Hilbert space, and find nontrivial
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three-mode interactions leading to accelerated cooling break-
ing the coherent cooling time limits. Thus, this study outlines
a comprehensive toolbox for application of DRL for fast
and efficient quantum control in a magnonic system within
and beyond RWA restrictions, which can be adapted to other
quantum systems of interest. For future and ongoing efforts
in quantum technology, this is expected to play a pivotal role,
especially in conjunction with various laboratory experiments.
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